Новый метод определения активности источников гамма-излучения, находящихся за слоем поглотителя с априорно неизвестными свойствами – метод G-фактора.

Оценки возможности практического применения метода G-фактора.

В.В. Дровников, Н.Ю. Егоров, А.В. Кадушкин, В.М. Живун, В.В. Коваленко НИЛ «Ядерно-физические технологии радиационного контроля»

Лаборатория «Ядерно-физические технологии радиационного контроля» телефон: (499) 323-91-04 e-mail: <u>egorov@radiation.ru</u> web-aдpec: <u>www.radiation.ru</u>

Сравнение результатов определения кратности ослабления гамма-излучения радионуклида ¹³⁷Cs.

- Гамма-спектрометрический метод определения кратности ослабления гамма-излучения в слое материала, расположенного между источником и детектором непосредственно по спектру гамма-излучения источника, измеренному за этим слоем.
- Никакая априорная информация о характеристиках слоя или вспомогательные измерения не требуются.
- Для определения коэффициента поглощения методом G-фактора проводить предварительные измерение спектра без поглощающего слоя не требуется.
- В определяемую методом G-фактора величину кратности ослабления уже входит составляющая, обусловленная поглощением в материале источника (самопоглощение). Это весьма ценное свойство метода, т.к. учет самопоглощения может оказаться весьма нетривиальной задачей.

Использование метода G-фактора для определения активности источника, находящегося под слоем неактивного материала с неизвестными характеристиками

In situ гамма-спектрометрический контроль территории

«ЗА» и «ПРОТИВ» общеизвестной In Situ гамма-спектрометрии

3A

- Экспрессность метода
- Возможность корректировок исследований непосредственно в процессе их проведения
- Отсутствие отбора проб, их транспортировки, лабораторных исследований и последующей утилизации
- Возможность получения информации, недоступной иными методами

ПРОТИВ

- Необходимость использования априорной информации об объекте
- Отбор, транспортировка, лабораторные исследования и утилизация проб исследуемого объекта
- Дополнительные измерения на исследуемом объекте
- Определенные сложности в эксплуатации HPGe спектрометров в полевых условиях
- Достаточно высокая стоимость полевых HPGe спектрометров
- Отсутствие работоспособных алгоритмов обработки Nal сцинтилляционных In situ гамма-спектров

Nal(TI) сцинтилляционный In situ гамма-спектрометр

К In situ определению запаса активности радионуклидов в грунте

Равномерное распределение активности

$$q(x) = \begin{cases} q_0 & npu \quad x < a \\ 0 & npu \quad x > a \end{cases}$$

Запас активности: $Q = q_0 \cdot a$

$$C_{p} = \frac{\eta \cdot \sigma}{2} \cdot Q \cdot F_{p}(z)$$
$$G = \alpha + \beta \cdot F_{G}(z)$$
$$z = \mu \cdot a$$

Экспоненциальное распределение активности

$$q(x) = q_0 \cdot e^{-k \cdot x}$$

Запас активности: $Q = \int_0^\infty q(x) dx = \frac{q_0}{k} (E_K / C_M^2)$
$$C_p(E) = \frac{\eta \cdot \sigma \cdot q_0}{2} \cdot \frac{1}{k} \cdot \ln\left(\frac{k + \mu}{\mu}\right)$$
$$C_p(E) = \frac{\eta \cdot \sigma}{2} \cdot Q \cdot \ln\left(\frac{k + \mu}{\mu}\right)$$

где

- *η*(*E*) квантовый выход гамма-линии с энергией *E*,
- σ(E) эффективная площадь детектора по ППП
 с энергией E (см²),
- *μ(E)* коэффициент поглощения гамма-квантов с энергией *E* в грунте.

$$C_{p} = \frac{\eta \cdot \sigma}{2} \cdot Q \cdot F_{p}(z)$$
$$G = \alpha + \beta \cdot F_{G}(z)$$
$$z = \mu/k$$

К In situ определению запаса активности радионуклидов в грунте

$$C_p = \frac{\eta \cdot \sigma}{2} \cdot Q \cdot F_p(z)$$

$$G = \alpha + \beta \cdot F_G(z)$$

К In situ определению запаса активности радионуклидов в грунте

Схема In situ гамма-спектрометрических измерений для определения запаса активности радионуклидов грунте

In situ определение активности радионуклидов в грунте. 2008 г. Чернобыльское загрязнение в Калужской области.

Haven	Запас радионуклида Cs-137		
номер точки	НРGe анализ проб		<i>In situ</i> Nal
	Кюри/км²	Бк/м²×10 ⁴	Бк/м ² ×10 ⁴
1	9.8 ± 0.3	36.1 ± 1.1	
2	3.8 ± 0.1	14.2 ± 0.5	
3	4.6 ± 0.1	17.1 ± 0.5	
4	3.7 ± 0.1	13.7 ± 0.5	16.5 ± 0.5
5	4.3 ± 0.1	15.9 ± 0.5	
Среднее / разброс	5.2 / 2.3	19/8	

In situ определение активности радионуклидов в грунте. Поле. 2008 г. Чернобыльское загрязнение в Калужской области.

Удельная активность, Бк/кг			
HPGe анализ проб			
Ra-226 Th-232 K-40 Cs-137			
8.48±0.19	8.14±0.43	191.5±2.5	404±11
In situ Nal			
Ra-226	Th-232	K-40	Cs-137
8.8±1.2	7.1±0.6	217±5	451±32

In Situ определение активности радионуклидов в грунте. Лес. 2008 г. Чернобыльское загрязнение в Калужской области.

Harran	Запас радионуклида Cs-137					
номер точки	НРGе анализ проб In situ Na			HPGe анализ проб		<i>In situ</i> Nal
	Кюри/км ²	Бк/м²×10 ⁴	Бк/м ² ×10 ⁴			
1	9.8±0.3	36.1±1.1				
2	3.8±0.1	14.2±0.5				
3	4.6±0.1	17.1±0.5				
4	3.7±0.1	13.7±0.5	16.5±0.5			
5	4.3±0.1	15.9±0.5				
Среднее / разброс	5.2 / 2.3	19/8				

web-адрес: www.radiation.ru

e-mail: egorov@radiation.ru

In situ определение активности радионуклидов в грунте. 2008 г. Чернобыльское загрязнение в Калужской области.

Среднее /

разброс

5.2/2.3

19/8

Определение типа источника методом G-фактора

Условия измерений	Значение G-фактора для ¹³⁷ Cs
Источник Cs-137 без поглотителя	4.17 ± 0.07
Калужская область. Чернобыльское загрязнение. Лес.	9.69 ± 0.03
Калужская область. Чернобыльское загрязнение. Поле.	14.04 ± 0.09
Нововоронежская АЭС. Поля фильтрации.	12.2 \pm 0.2 / 18.4 \pm 0.12
Источник Cs-137 под слоем щебня толщиной 30 см.	42.9 ± 0.9

Определение G-фактора для радионуклидов Cs-137 и Co-60 на полях фильтрации Нововоронежской АЭС.

Детектор Дата измерений	G-фактор по ⁶⁰ Со		G-фактор по ¹³⁷ Cs	
	Без поглотителя	На полях фильтрации	Без поглотителя	На полях фильтрации
Nal Ø3"×3" 31.03.2009 г.	2.02 ± 0.06	7.9 ± 1.0	- 4.17 ± 0.07	12.2 ± 0.2
Csl Ø2"×2" 29.09.2009 г.		9.7 ± 0.5		18.4 ± 0.1

Использование метода G-фактора для определения активности источника, находящегося под слоем неактивного материала с неизвестными характеристиками

$$Q = \frac{\left(H_2 - H_1\right)^2}{\sigma \cdot Y} \cdot \frac{C_{p1} \cdot C_{p2}}{\left(\sqrt{C_{p1}} - \sqrt{C_{p2}}\right)^2} \cdot K$$

где

С_{Р1} И С_{Р2} – скорости счета в пиках полного поглощения, полученные при обработке спектров, измеренных на расстояниях Н1 и Н2,

О – чувствительность спектрометра
 в пике полного поглощения для
 гамма-квантов данной энергии,

Y – квантовый выход гамма-квантов данной энергии,

К – поправка на поглощение гаммаквантов в слое толщиной Н, определяемая по методу G-фактора

О применимости сцинтилляционного гамма-спектрометра

нил яфтрк

e-mail: egorov@radiation.ru

web-adpec: www.radiation.ru

К определению активности источников гамма-излучения в контейнере

Смесь радионуклидов ¹⁵²Eu, ²⁰⁷Bi, ⁴⁴Ti, ¹³⁷Cs. Поглотитель вода. Толщина поглощающего слоя воды от 15 см до 41 см.

Смесь радионуклидов ¹⁵²Eu, ²⁰⁷Bi, ⁴⁴Ti, ¹³⁷Cs. Поглотитель песок. Толщина поглощающего слоя песка от 15 см до 41 см.

Смесь радионуклидов ¹⁵²Eu, ⁶⁰Co, ⁹⁴Nb, ¹³⁷Cs. Поглотитель вода. Толщина поглощающего слоя воды от 11 см до 45 см.

Смесь радионуклидов ¹⁵²Eu, ⁶⁰Co, ⁹⁴Nb, ¹³⁷Cs. Поглотитель песок. Толщина поглощающего слоя песка от 10 см до 46 см.

Усредненные по всем измерениям контейнера значения активности источника ¹³⁷Cs + ¹⁵²Eu + ⁴⁴Ti + ²⁰⁷Bi.

Нуклиды	Паспортные значения активности Q, кБк	Экспериментальные значения активности Q, кБк
¹³⁷ Cs	120 ± 3.6	115 ± 9
¹⁵² Eu	170 ± 5.1	176 ± 15
⁴⁴ Ti	50 ± 1.5	55 ± 7
²⁰⁷ Bi	38 ± 1.1	35 ± 4

Усредненные по всем измерениям контейнера значения активности источника ¹⁵²Eu + ⁶⁰Co + ¹³⁷Cs + ⁹⁴Nb.

Нуклиды	Паспортные значения активности Q, кБк	Экспериментальные значения активности Q, кБк
¹⁵² Eu	22.46 ± 0.23	21.5 ± 2.4
⁶⁰ Co	4.29 ± 0.24	3.6 ± 0.4
¹³⁷ Cs	16.38 ± 0.34	17.2 ± 2.0
⁹⁴ Nb	7.70 ± 0.35	8.3 ± 1.1

